3.8.32 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 \, dx\) [732]

Optimal. Leaf size=64 \[ -\frac {8 \sqrt [4]{-1} a^3 \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 \left (i a^3+a^3 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}} \]

[Out]

-8*(-1)^(1/4)*a^3*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d-2*(I*a^3+a^3*cot(d*x+c))/d/cot(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {3754, 3634, 12, 3614, 214} \begin {gather*} -\frac {8 \sqrt [4]{-1} a^3 \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 \left (a^3 \cot (c+d x)+i a^3\right )}{d \sqrt {\cot (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^3,x]

[Out]

(-8*(-1)^(1/4)*a^3*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*(I*a^3 + a^3*Cot[c + d*x]))/(d*Sqrt[Cot[c +
d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3614

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2*(c^2/f), S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3634

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
 + Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(
m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && Lt
Q[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3754

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 \, dx &=\int \frac {(i a+a \cot (c+d x))^3}{\cot ^{\frac {3}{2}}(c+d x)} \, dx\\ &=-\frac {2 \left (i a^3+a^3 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}-2 \int -\frac {2 i a^2 (i a+a \cot (c+d x))}{\sqrt {\cot (c+d x)}} \, dx\\ &=-\frac {2 \left (i a^3+a^3 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}+\left (4 i a^2\right ) \int \frac {i a+a \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=-\frac {2 \left (i a^3+a^3 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}-\frac {\left (8 i a^4\right ) \text {Subst}\left (\int \frac {1}{-i a+a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=-\frac {8 \sqrt [4]{-1} a^3 \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 \left (i a^3+a^3 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.89, size = 125, normalized size = 1.95 \begin {gather*} \frac {2 a^3 e^{-3 i c} (\cos (3 (c+d x))+i \sin (3 (c+d x))) \left (-i-\cot (c+d x)+\frac {4 i \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )}{\sqrt {i \tan (c+d x)}}\right )}{d \sqrt {\cot (c+d x)} (\cos (d x)+i \sin (d x))^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^3,x]

[Out]

(2*a^3*(Cos[3*(c + d*x)] + I*Sin[3*(c + d*x)])*(-I - Cot[c + d*x] + ((4*I)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*
x)))/(1 + E^((2*I)*(c + d*x)))]])/Sqrt[I*Tan[c + d*x]]))/(d*E^((3*I)*c)*Sqrt[Cot[c + d*x]]*(Cos[d*x] + I*Sin[d
*x])^3)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 30.18, size = 748, normalized size = 11.69

method result size
default \(-\frac {a^{3} \left (4 i \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-4 i \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-4 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+4 i \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-4 i \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-4 \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+i \sin \left (d x +c \right ) \sqrt {2}+\cos \left (d x +c \right ) \sqrt {2}\right ) \sin \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {2}}{d \cos \left (d x +c \right )^{2}}\) \(748\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-a^3/d*(4*I*cos(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1
/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-4*
I*cos(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+c
os(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-4
*cos(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+co
s(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+4*
I*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/
sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-4*I*(-(cos(d*x+c)-1-sin
(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Ell
ipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-4*(-(cos(d*x+c)-1-sin(d*x+c))/sin
(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+I*sin(d*x+c)*2^(1/2)+cos(d*x+c)*2^(1/2))*sin(
d*x+c)*(cos(d*x+c)/sin(d*x+c))^(3/2)/cos(d*x+c)^2*2^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 144 vs. \(2 (54) = 108\).
time = 0.49, size = 144, normalized size = 2.25 \begin {gather*} -\frac {{\left (\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \left (2 i - 2\right ) \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \left (i + 1\right ) \, \sqrt {2} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \left (i + 1\right ) \, \sqrt {2} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{3} + 2 i \, a^{3} \sqrt {\tan \left (d x + c\right )} + \frac {2 \, a^{3}}{\sqrt {\tan \left (d x + c\right )}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

-(((2*I - 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + (2*I - 2)*sqrt(2)*arctan(-1/2*sqrt
(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - (I + 1)*sqrt(2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) +
 (I + 1)*sqrt(2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a^3 + 2*I*a^3*sqrt(tan(d*x + c)) + 2*a
^3/sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (54) = 108\).
time = 0.52, size = 281, normalized size = 4.39 \begin {gather*} -\frac {16 \, a^{3} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {\frac {64 i \, a^{6}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (8 i \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt {\frac {64 i \, a^{6}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{4 \, a^{3}}\right ) + \sqrt {\frac {64 i \, a^{6}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (8 i \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {\frac {64 i \, a^{6}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{4 \, a^{3}}\right )}{4 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/4*(16*a^3*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(2*I*d*x + 2*I*c) - sqrt(64*I*a^6/d
^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(8*I*a^3*e^(2*I*d*x + 2*I*c) + sqrt(64*I*a^6/d^2)*(d*e^(2*I*d*x + 2*I*
c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/a^3) + sqrt(64*I*a^6
/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(8*I*a^3*e^(2*I*d*x + 2*I*c) - sqrt(64*I*a^6/d^2)*(d*e^(2*I*d*x + 2*
I*c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/a^3))/(d*e^(2*I*d*
x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - i a^{3} \left (\int i \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int \left (- 3 \tan {\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int \tan ^{3}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int \left (- 3 i \tan ^{2}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**3,x)

[Out]

-I*a**3*(Integral(I*cot(c + d*x)**(3/2), x) + Integral(-3*tan(c + d*x)*cot(c + d*x)**(3/2), x) + Integral(tan(
c + d*x)**3*cot(c + d*x)**(3/2), x) + Integral(-3*I*tan(c + d*x)**2*cot(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^3*cot(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^3,x)

[Out]

int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^3, x)

________________________________________________________________________________________